If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+4=159
We move all terms to the left:
5n^2+4-(159)=0
We add all the numbers together, and all the variables
5n^2-155=0
a = 5; b = 0; c = -155;
Δ = b2-4ac
Δ = 02-4·5·(-155)
Δ = 3100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3100}=\sqrt{100*31}=\sqrt{100}*\sqrt{31}=10\sqrt{31}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{31}}{2*5}=\frac{0-10\sqrt{31}}{10} =-\frac{10\sqrt{31}}{10} =-\sqrt{31} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{31}}{2*5}=\frac{0+10\sqrt{31}}{10} =\frac{10\sqrt{31}}{10} =\sqrt{31} $
| 2m–5=17 | | 16n-3n-8n+3n+2n=20 | | 54-4x=30 | | 2x−2=−8 | | -60=4x+4 | | 12=r+10/2 | | 6g-5g=12 | | 6s-5s=19 | | -2+8x+8x-2=140 | | t÷4-6=10 | | 5/6(x-3)=7/12x+1/3 | | 36x^2+6=31 | | 2(7x+3)=3x-18-x | | 8x-4+8x+6=130 | | 9r-8r=4 | | x=(4x+9)/(7x+5) | | 9r−8r=4 | | 8x+15=6x-17 | | 3(x-2)+2=4x+15 | | a÷8=10 | | y=12.50+7.50 | | 8.56+0.4x=2.2 | | 0.5g+1=7+4.5g | | 2(b-8)=32 | | 6x+4=2(x+4)-8 | | 4x+7=3(x+2) | | 6z=18z | | 106-x=164 | | 17-23y=5 | | -5=7y+9 | | 30-u=187 | | 135=-3(5x-5) |